
The theme of this issue deals with
consulting. As consultants, the

authors know that consulting is all about
leverage and motion. Of course, being
card-carrying geeks (punch cards, that
is), the authors immediately made the
connection between motion and
Newton. Newton, after all, formulated
the “Laws of Motion.”

Newton’s laws govern the movement
of the universe. Unfortunately, we’ve
noted that software doesn’t seem to fol-
low Newton’s Laws of Motion. In fact,
software often seems not to follow any
laws of motion at all. Thus, the authors
have developed what we modestly call
the “Cook-Leishman Laws of Software
Motion.”

These so-called laws can provide
understanding and guidance to program
managers, developers, and users. These
laws help indicate the relationships
between time, cost, effort, and program
progress.

Law No. 1
Newton’s First Law – An object in uni-
form non-accelerated motion (or at
rest), will remain in the same state of
motion unless an outside force acts
upon it.

Cook-Leishman’s First Law – Any
software intensive program not given
adequate force (motivation) will degrade
and cease to progress.

Any program slowly making progress
at a steady rate will eventually grind to a
halt unless continual outside force is
applied to it. Programs will not coast. It
takes active program/project manage-
ment and focused risk management to
keep a program continually and success-
fully proceeding [1]. If you do not have
an active risk management plan, you run
the risk of having your program stall.

If by some rare chance a program
quits making progress, it takes a lot of
effort to get it moving again. In fact, lack
of progress usually means that programs
tend to degrade. Personnel are reas-
signed, budgets shrink, and out-of-sight,
out-of-mind thinking takes over.

Law No. 2
Newton’s Second Law – There is a rela-
tionship between force, mass, and acceler-
ation that is specified as F = ma.

Cook-Leishman’s Second Law – There
is a relationship between the forces
required to accomplish a software intensive
program/project. This relationship corre-
lates requirements (R), changes (C), exter-
nal influences (X), and timing (T) (sched-
ule), thus F = f(R,C,X,T) where f stands as
function that relates R, C, X and T.

Often, in the real world, there is actu-
ally an inverse relationship between the
software force F and R, C, X, and T. In
large programs that are well staffed and
well funded, relatively small efforts or
influences can make a change; this is due
to the fact that the small changes require
relatively minor effort with respect to the
entire program. On the other hand, in
small programs, small efforts or influences
might reflect major changes to the entire
effort. In addition, in some programs,
major efforts have to be made to imple-
ment relatively small changes.

Changes can occur based upon outside
forces (changes) that seem to have no
influence upon your program. With inter-
service programs, multiple users and mul-
tiple sources of requirements can have
ripple effects in which insignificant events
can have major impacts upon your pro-
gram.

In the first law, risk management (and
risk mitigation) is required. In the second
law, configuration management is the
major player [2]. Without a configuration
management plan that puts you in proac-
tive instead of reactive mode, changes will
eventually stop forward progress. At this
point, Law No. 1 will apply.

Law No. 3
Newton’s Third Law – For every action,
there is an equal and opposite reaction.

Cook-Leishman’s Third Law – For
every action, there are varying reactions.
Some are small, and some might have
exponentially greater force. You really

don’t know what the consequence will be.
The same action at a different time might
have totally different consequences.

Small changes early in the program
have minor consequences. The same
changes during design might cause rela-
tively major rewriting of both code and
design. During integration and systems
testing, the changes might cause a cata-
strophic delay in final delivery. Timing is
everything. Attempts to improve quality
might have positive effects one time, but
the same attempt might not help at a dif-
ferent time (or for a different organiza-
tion). You have to keep the end product in
focus, and remember that the process has
to be tailored for each product, not vice
versa. [3] To put Law No. 3 in a nutshell,
“Timing is everything.”

Are these laws really laws? Of course
not! In reality they are, at best, general
guidelines or hints. They are based on an
examination of many software projects
under varying constraints. Certainly, soft-
ware development is far too complex to
be summed up in a few so-called laws.
After all, even Newton wasn’t totally cor-
rect1.

However, these so-called laws do help
provide general guidelines to help you
keep your program moving forward. Have
a strong risk management and risk mitiga-
tion plan. Implement configuration man-
agement, and use risk management and
configuration together to proactively pre-
dict upcoming changes, thus mitigating
major cost and schedule impacts. Focus
on the product and quality, and modify the
process to accommodate the needs of
your program.

To sum it up, you can help your pro-
gram greatly by applying Cook-Leishman’s
Fourth Law.

Law No. 4
Cook-Leishman’s Fourth Law – Read
(and heed!) CrossTalk regularly.

-Dr. David A. Cook
AEgis Technologies Group

and 
-Theron Leishman

STSC/Northrop Grumman

BACKTALK

February 2004 www.stsc.hill.af.mil 31

Laws of Software Motion

References
1. Leishman, Theron R., and Dr. David A. Cook. “Requirements Risk Can Drown Software

Projects.” CrossTalk Apr. 2002: 4.
2. Leishman, Theron R., and Dr. David A. Cook. “But I Only Changed One Line of Code!”

CrossTalk Jan. 2003: 20.
3. Cook, Dr. David A. “Confusing Process and Product: Why the Quality Is Not There Yet!”

CrossTalk July 1999: 27.

Note
1. The authors can see the e-mail now. Yes, Newton was correct given the understanding of

physics at the time. Quantum theory and Einstein have changed a few things. Newton’s
laws do not apply either at relativistic speeds (near the speed of light), or at the very small
level, where quantum mechanics must be used. Newton’s laws, of course, do apply to all
generally observed behaviors.


